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Density functional theory is used to study colloidal hard-rod fluids near an individual right-angled wedge or
edge as well as near a hard wall, which is periodically patterned with rectangular barriers. The Zwanzig model,
in which the orientations of the rods are restricted to three orthogonal orientations but their positions can vary
continuously, is analyzed by numerical minimization of the grand potential. Density and orientational order
profiles, excess adsorptions, as well as surface and line tensions are determined. The calculations exhibit an
enrichment[depletion] of rods lying parallel and close to the corner of the wedge(edge). For the fluid near the
geometrically patterned wall, complete wetting of the wall—isotropic liquid interface by a nematic film occurs
as a two-stage process in which first the nematic phase fills the space between the barriers until an almost
planar isotropic—nematic liquid interface has formed separating the higher-density nematic fluid in the space
between the barriers from the lower-density isotropic bulk fluid. In the second stage, a nematic film of
diverging film thickness develops upon approaching bulk-isotropic–nematic coexistence.
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I. INTRODUCTION

There is growing interest in properties of suspensions of
colloidal particles near structured walls because of useful
applications, such as selective deposition of particles[1] and
controlled growth of colloidal crystals[2]. While experimen-
tal [1,2], theoretical[3–6], and computer simulation[7–10]
studies have been devoted to the understanding of the behav-
ior of spherical colloidal particles near geometrically struc-
tured substrates, suspensions of rodlike colloidal particles in
contact with such substrates have not been investigated yet,
despite the importance of rodlike colloids for both biological
and materials application. From a theoretical point of view,
as compared with fluids consisting of spherical particles, the
study of rods is more difficult because of the additional ori-
entational degrees of freedom.

Here we study hard-rod fluids near geometrically struc-
tured walls within the Zwanzig approximation[11]. In this
model the allowed orientations of the rods are restricted to
three mutually perpendicular orientations rather than a con-
tinuous range of orientations in space(see Fig. 1); the posi-
tions of the rod centers are continuous variables. The advan-
tage of this model is that the difficult determination of
spatially inhomogeneous density and orientational order pro-
files becomes feasible allowing one to study various aspects
of hard-rod fluids near structured walls in detail. On the basis
of recent theoretical studies on fluids of hard rods near planar
hard walls [12–14], we expect to find results that remain
qualitatively correct even in the absence of the restriction to
discrete orientational directions. In Sec. II we describe the
density functional theory, which is used to analyze a hard-rod
fluid in contact with an individual right-angled wedge
or edge (Sec. III) or with a periodically patterned wall
(Sec. IV).

II. MODEL AND DENSITY FUNCTIONAL THEORY

We consider an inhomogeneous fluid consisting of hard
rods of lengthL and thicknessD!L. The number density of

the centers of mass of the rods at pointr with orientation
v=su ,fd of the normal along their main axis of symmetry is
denoted asrsr ,vd. The equilibrium density profile of the
inhomogeneous liquid under the influence of an external
field Vextsr ,vd minimizes the grand potential functional

FIG. 1. The system under consideration consists of a fluid of
thin hard rods of lengthL and thicknessD!L in contact with a
hard substrate(gray). The surfacezssxd of the substrate wall exhibits
a periodic pattern with periodp consisting of rectangular blocks of
width w and heighth. The density profiles for the centers of the
rods with an orientation of the normal along their main axis of
symmetry parallel to the orthogonal unit vectors of the reference
frame are denoted asrxsx,zd, rysx,zd, and rzsx,zd. The system is
spatially invariant in they direction. In accordance with the dis-
creteness of the orientational degrees of freedomrzfx,z,zssxd
+L /2g=0, rxfx0+np−sw+Ld /2,x,x0+np+sw+Ld /2 ,z,hg=0
with nPZ, and rx,yfx,z,zssxdg=0 wherezssx0+np−w/2,x,x0

+np+w/2d=h andzssxd=0 otherwise. The value ofx0 is arbitrary.
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Vfrsr ,vdg =E d3rdvrsr ,vdfkBTslnf4pL3rsr ,vdg − 1d − m

+ Vextsr ,vdg + Fexfrsr ,vdg, s1d

whereL is the thermal de Broglie wavelength andm is the
chemical potential. Within the Onsager second virial ap-
proximation, the free-energy functionalFexfrsr ,vdg in ex-
cess of the ideal gas contribution reads[15]

Fexfrsr ,vdg = −
kBT

2
E d3r1dv1d

3r2dv2rsr 1,v1drsr 2,v2d

3fsr 1,r 2,v1,v2d, s2d

where fsr 1,r 2,v1,v2d is the Mayer function of the interac-
tion potential between two rods. The Mayer function equals
−1 if the rods overlap and is zero otherwise. Onsager dem-
onstrated that the second virial approximation becomes exact
in the limit of thin needlelike rodssD!Ld for the bulk fluid
because of the infinitesimal probability that three or more
rods will simultaneously intersect[15].

In the present application of density functional theory, we
concentrate on the ordering effects induced by surfaces geo-
metrically structured such that the resultingrsr ,vd depends
on two spatial coordinates. For the model system displayed
in Fig. 1, apart from the possibility of surface freezing at
high densities, nonuniformities of the density occur only in
the x-z plane, so thatrsr ,vd=rsx,z,u ,fd. Minimization of
V with respect torsx,z,u ,fd leads to the following Euler-
Langrange equation:

kBT lnf4pL3rsx,z,u,fdg

= m − Vextsx,z,u,fd +E dx1dy1dz1E
0

2p

df1E
0

p

du1 sin u1

3rsx1,z1,u1,f1dfsx,z,u,f,x1,y1,z1,u1,f1dkBT. s3d

This equation can be solved numerically for a given chemi-
cal potentialm and a given external fieldVsx,z,u ,fd. For
computational purposes, the density profile has to be speci-
fied on a sufficiently fine 4Dsx,z,u ,fd grid. In order to
reduce this computational effort we use the Zwanzig model
for rods [11]. Within the Zwanzig model the rods are repre-
sented by rectangular blocks of sizeL3D3D. The positions
of the center of mass vary continuously, while the allowed
orientations of the normal of each rod are restricted to direc-
tions parallel to thex, y, andz axis (see Fig. 1). Using the
notation axsx,zd=asx,z,u=p /2 ,f=0d, aysx,zd=asx,z,u
=p /2 ,f=p /2d, and azsx,zd=asx,z,u=0,f=0d with a
=r ,Vext, the Euler-Lagrange equations for a fluid consisting
of thin Zwanzig rods can be written as

lnfL3rxsx,zdg = skBTd−1fm − Vext,xsx,zdg

− 2DLE
x−L/2

x+L/2

dx1rysx1,zd

− 2DE
x−L/2

x+L/2

dx1E
z−L/2

z+L/2

dz1rzsx1,z1d, s4d

lnfL3rysx,zdg = skBTd−1sm − Vext,yd − 2DLE
z−L/2

z+L/2

dz1rzsx,z1d

− 2DLE
x−L/2

x+L/2

dx1rxsx1,zd, s5d

and

lnfL3rzsx,zdg = skBTd−1sm − Vext,zsx,zdd

− 2DLE
z−L/2

z+L/2

dz1rysx,z1d

− 2DE
x−L/2

x+L/2

dx1E
z−L/2

z+L/2

dz1rxsx1,z1d, s6d

which allow for a straightforward iterative numerical com-
putation on a 2Dsx,zd grid. We note that the meaning of the
terms on the right side of Eqs.(4)–(6) can easily be inferred
from considering the various orientations of the rods(see
Fig. 1). It is convenient to introduce the variablem!=m
−kBT lnsL3/L2Dd. In the following sections numerical data
are given in terms ofm!, and we drop the star in order to
avoid a clumsy notation.

The bulk phase behavior of this model was studied a long
time ago by Zwanzig[11], who found a first-order-isotropic–
nematic phase transition similar to Onsager’s result for freely
rotating rods[15]. Recently, the Zwanzig model has been
used to investigate the phase behavior of monodisperse
[12,13] and binary[14] rod fluids near a single planar hard
wall and confined in slit pore. These calculations yield a
wall-induced continuous surface transition from uniaxial to
biaxial symmetry. Complete wetting of the wall–isotropic
liquid interface by a biaxial nematic film has been found. For
the fluids confined by two parallel hard walls, at large slit
widths a first-order capillary nematization transition occurs,
which terminates in a capillary critical point upon decreasing
the slit width.

III. HARD-ROD FLUID NEAR A RIGHT-ANGLED
WEDGE AND EDGE

Before studying the hard-rod fluid near the geometrically
structured surface shown in Fig. 1 it is instructive to analyze
first the fluid around an individual right-angled wedge or
edge(see Fig. 2). These simple geometrical structures con-
stitute the building blocks of the structured surface displayed
in Fig. 1. An analysis of the size dependence leads to the
following decomposition of the grand canonical potential
functional of the fluid, which in its bulk is taken to be in the
isotropic phase

Vfrsx,zdg = HyfHxHzvb + sHx + HzdgwI + tIsadg, s7d

wherevb is the bulk grand canonical potential density,gwI is
the wall–isotropic liquid surface tension at a planar wall, and
tIsad is the line tension of the isotropic liquid witha=p /2
for the wedge anda=3p /2 for the edge. The extensionHb

of the system in directionb=x,y,z is defined as the length
available to the rim of the particles at closest approach to the
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boundary. We restrict our analysis to chemical potentialsm
smaller than the chemical potentialmsINd / skBTd=0.8087227
at bulk-isotropic–nematic coexistence. In order to determine
the line tensions we first calculate the bulk grand potential
densityvb and the surface tensiongwI by considering a bulk
fluid and a fluid near a single hard wall, respectively. There-
aftertIsp /2d andtIs3p /2d are calculated using the geometry
shown in Fig. 2. Figure 3 displays the surface tensiongwI as
well as the line tensionstIsp /2d andtIs3p /2d as a function
of the chemical potential. The steric interaction between the
particles increases the surface tension with increasing chemi-
cal potential. On the other hand, the onset of the surface-
induced nematic ordering of the particles leads to a decrease
of the surface tension for larger chemical potentials. In the
limit of large negative chemical potentials, i.e., for noninter-
acting particles, the wall–isotropic liquid surface tension as
well as the line tensions vanish. The line tensiontIsp /2d for
the fluid near a right-angled wedge exhibits a change of sign
with increasing chemical potential whiletIs3p /2d.0 for all
values ofm. We note that by constructiontIspd=0. As a
function of a the line tensiontIsad corresponds to the work
done per unit length, against the fluid, to change the dihedral
angle fromp to some valuea [16,17]. The corresponding
solvation torque istIsad=−dtIsad /da.

Figures 4 and 5 show the density profiles at the right-
angled wedge and edge for a chemical potentialm=0. The
profiles are evaluated along lines parallel to the confining
walls (see Fig. 2), using a linear parametrizations such that

s=0 corresponds to the position of the corner. Fors→ ±`
the density profiles at a planar hard wall are recovered. As is
apparent from Fig. 4, the density profilerysx,zd exhibits a
maximum ats=0 for the right-angled wedge. This maximum
increases upon approaching the corner of the wedge. For a
right-angled edge a significant depletion of rods lying paral-
lel to the y axis is found near the corner(see Fig. 5). The
sharp features of the density profiles in the presence of the
right-angled edge are caused by the vanishing ofrxsxù
−L /2 ,zù0d and rzsxù0,zù−L /2d, which is due to the
presence of the impenetrably hard walls. Such cusps and
discontinuities, although less pronounced, have already been
found for the density profiles near a planar hard wall using
the Zwanzig model[12–14], while the interfacial profiles
between demixed fluid phases, as calculated for the same
model, exhibit neither cusps nor discontinuities[18]. We do

FIG. 2. Cross section of an individual right-angled wedge and
edge, respectively. The outer part of the shaded region forms an
edge whereas the inner part forms a wedge. The geometrical struc-
tures are translationally invariant in they direction perpendicular to
the plane of the figure. In Figs. 4 and 5 density profiles of thin hard
rods of lengthL are shown along the paths indicated by the solid,
dashed, and dotted lines, which are parallel to the outer and inner
surface, respectively. The paths are parameterized bys such that for
each lines=0 s•d indicates the position of its corner atx=z. rysx,zd
is symmetric arounds=0 andrx for s_0 equalsrz for s+0. Both
for the wedge and edge the position of the corner is associated with
sx,zd=s0,0d; in this figure both cases are superimposed.

FIG. 3. (a) The wall–isotropic liquid surface tension at a planar
wall gwI (solid line) together with the line tension at a right-angled
wedgetIsp /2d (dashed line) and edgetIs3p /2d (dotted line) of a
fluid consisting of thin rods of lengthL and thicknessD!L as a
function of the chemical potential. The vertical line marks the loca-
tion of the chemical potentialmsINd / skBTd=0.8087227 at bulk
isotropic–nematic coexistence. The wall–isotropic liquid interface is
completely wetted by a nematic film, i.e.,gwI=gwN+gIN=0.0498
kBT/ sLDd at msINd, wheregwN is the wall–nematic liquid surface
tension andgIN is the isotropic–nematic interfacial tension[12–14].
At msINd, tIs3p /2d is slightly larger thangwIL andtIsp /2d attains a
finite value that becomes visible only at higher resolutions.tIsp /2d
changes sign atm / skBTd=0.27. (b) The total particle number den-
sity rb=rsx,z→`d [see Eq.(8)] of the homogeneous and isotropic
bulk fluid as a function of the chemical potential:m / skBTd
= lnsrbDL2d−ln 3+4rbDL2/3. At bulk isotropic–nematic coexist-
ence(marked by the vertical line), the density of the isotropic phase
is given byrbDL2=1.25822486. This figure allows one to translate
values for m into rb, which is experimentally accessible, and
vice versa.
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not expect to observe discontinuities in the density profiles
for freely rotating rods near an edge, similar to our findings
for hard rods near a planar hard wall[19] (see discussion
below). Although the calculated density profiles presented in
Figs. 4 and 5 can only be considered to be of qualitative
significance, we expect that the main features, namely the
enrichment[depletion] of rods lying parallel and close to the
corner of a wedge[edge] as well as the asymmetry of the
density profilesrxsx,zd and rzsx,zd with respect to the line
s=0, remain valid for freely rotating rods.

In order to understand the structure of the density profiles
displayed in Figs. 4 and 5, it is instructive to apply the idea
of entropically driven forces(see, e.g., Ref.[20]) to the
Zwanzig model. We consider rods of a given orientation
along thex, y, andz axes as belonging to one of three “spe-
cies.” Such a three-component fluid maximizes its entropy
by maximizing the volume accessible per rod. Although
there exist only steric repulsions between pairs of particles,
maximizing the entropy in the fluid mixture can lead to an
effective entropic attraction between the rods and the walls.
Figure 6(b) demonstrates that, when a rod of a given species
approaches a planar wall(represented in gray), the total vol-
ume available to rods of the other species increases. This
increases the total entropy of the mixture by an amount pro-
portional to the size of the excluded-volume overlap region
(represented in black) multiplied by the pressure. For a rod
lying close and parallel to a right-angled wedge[edge] the
corresponding excluded-volume overlap region is increased
[decreased] (see Figs. 6(c) and 6(d), respectively) leading to

an enrichment[depletion] of such rods close to the corner of
a wedge[edge]. The results may be interpreted in terms of a
repulsive barrier of an effective potential repelling a rod,
which is oriented parallel to the corner of an edge, approach-
ing the edge from the side, and practically preventing it from
passing around the corner. On the other hand, the effective
potential acting on a rod, which is oriented parallel to the
corner of a wedge, is “pushing” it into the corner. For a
detailed analysis of these mechanisms acting on mixtures of
hard spheres near edges and wedges, see Ref.[5] and in
particular Figs. 5 and 7 therein.

The simple illustration in Fig. 6(d) is also helpful for un-
derstanding the aforementioned discontinuities in the density
profiles near the right-angled edge(see Fig. 5). When a thin
rod sD!Ld, which is oriented parallel to the edge, ap-
proaches the edge from the side, the excluded-volume over-
lap drops abruptly to zero before the rod is passing around
the corner. This causes the discontinuities in the density pro-
files along the paths specified in Fig. 2. For freely rotating
rods, the corresponding excluded-volume overlap decreases
smoothly to zero because of the huge number of differently
oriented rods acting on the rod which is oriented parallel to
the edge. It is worthwhile to emphasize that the concept of
effective entropic interactions is valid for arbitrary thickness
DÞ0 of the rods. However, for very thin rods the excluded
volume and the excluded volume overlap region are similar
to plane and line segments. ForD=0 the excluded volume
vanishes as expected on physical grounds.

FIG. 4. The density profilesrxsx,zd, rysx,zd, andrzsx,zd for thin
hard rods of lengthL thicknessD!L near a right-angled wedge
evaluated along the paths specified in Fig. 2(using the same line
code, i.e., solid, dashed, and dotted lines). The chemical potential is
m=0. The solid curve in(a) [(c)] represents forsù0 [sø0] the
density profile along the line of closest contact, i.e., rods oriented
parallel to thex [z] axis touch the wall with the rim.ry is symmetric
arounds=0 andrx for s_0 equalsrz for s+0.

FIG. 5. The density profilesrxsx,zd, rysx,zd, andrzsx,zd for thin
hard rods of lengthL and thicknessD!L near a right-angled edge
evaluated along the paths specified in Fig. 2(using the same line
code, i.e., solid, dashed, and dotted lines). The chemical potential is
m=0. The solid curve in(a) [(c)] represents forsùL /2 fs
ø−L /2g the density profile along the line of closest contact, i.e.,
rods oriented parallel to thex fzg axis touch the wall with the rim.
ry is symmetric arounds=0 andrx for s_0 equalsrz for s+0.
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Finally, we briefly discuss the phase behavior of hard rods
confined in a hard pore of square cross section. The imme-
diate consequence of the pore is that rods oriented perpen-
dicular to the confining walls cannot approach closer than a
center-of-mass distanceL /2. There is a pronounced increase
of the density of rods orientated parallel to the main axis of
the pore in the corners of the pore because of the aforemen-
tioned effective entropic attraction. For sufficiently large
cross sections of the pore, we observe coexistence between
an isotropic phase and a capillary-condensed nematic phase.

The density profile of the capillary-condensed nematic phase
is characterized by a nematic phase throughout the pore,
whereas the density profile of the coexisting phase decays
toward an isotropic phase in the middle of the pore. For
small pore cross sections, a sharp capillary nematization
transition no longer occurs and is replaced by a steep but
continuous filling upon increasing the chemical potential.
For the same fluid confined in a slit pore the confinement
effects are weaker. Thus, in the slit pore we observe capillary
nematization at a higher chemical potential corresponding to
a higher particle number density of the bulk fluid. However,
the spatially averaged particle number density of the coexist-
ing inhomogeneous isotropic phase in the slit pore is smaller
than the corresponding one in the pore of square cross
section.

IV. HARD-ROD FLUID IN CONTACT WITH A
PERIODICALLY STRUCTURED HARD WALL

We now turn our attention to the properties of the hard-
rod fluid in contact with the hard wall shown in Fig. 1. The
surface of the wall is periodically patterned with rectangular
hard barriers of widthw and heighth, where the periodicity
is denoted byp. We focus on the numerically determined
orientationally averaged number density profile

rsx,zd = rxsx,zd + rysx,zd + rzsx,zd s8d

and the excess adsorptionG defined as

G =E dx dzfrsx,zd − rbg, s9d

whererb=rsx,z→`d is the total particle number density of
the homogeneous bulk fluid. The volumeV=edx dy dzof the
system is defined as the total volume of the container, i.e.,
the left boundary of the system displayed in Fig. 1 is taken to
be the surfacezssxd of the substrate wall, which implies that
the trenches between the barriers contribute toV. Figure 7
displaysG for various values of the barrier heighth and two
values of the barrier widthw at a fixed periodicityp of the
surface pattern. For noninteracting rodssm→−`d, the calcu-
lated excess adsorption reveals a slight depletion close to the
surfacesG,0d because there is less space available to the
rods in the presence of the impenetrably hard walls. For the
same reason this depletion becomes more pronounced with
increasing height of the barriers(i.e., increasing the actual
exposed solid area). Upon increasing the chemical potential,
the excess adsorption increases and exhibits a change of sign
because of the aforementioned entropic attraction between
the rods and the surface[see Fig. 6]. For small barrier
heights,G increases smoothly upon increasing the chemical
potential, while a pronounced variation of the excess adsorp-
tion is found for large barrier heights at a chemical potential
smaller than the chemical potentialmsINd at bulk isotropic–
nematic coexistence. Moreover, the calculation rendersG to
diverge logarithmically asm→msINd. Near msINd the excess
adsorption can be fitted byG=A1−A2 lnfsmsINd−md / skBTdg,
with fit parametersA1 andA2, whereA2.0 turns out to be
independent of the surface pattern. The logarithmic diver-

FIG. 6. Illustrations of the effective entropic interactions of hard
rods with surfaces.(a) Schematic side view of rectangular rods of
length L and thicknessD with orientations along thex, y, and z
axes, where they axis is perpendicular to the plane of the figure.(b)
Due to the steric interaction, the centers of mass of rods withx
direction are excluded from the hatched regions surrounding the
rods withy direction (quadratic cross-section) and the walls(thick
gray lines). Here one rod withx direction touches a rod withy
direction (left) while another rod withx direction fully touches the
wall which is oriented parallel to thez axis (right). The rods withx
direction are viewed as depletion agents leading to an effective
interaction between the rod withy direction and the walls. When
rods with orientations along they axis are sufficiently separated
from each other and from the walls, the volume accessible to the
rods withx direction is the total volume of the container minus the
volume of the hatched regions. However, when a rod oriented par-
allel to they axis is close to a wall, the volume accessible to the
rods with x direction increases by the excluded-volume overlap
region marked in black. The corresponding increase in entropy in-
duces an effective attractive force between rods with an orientation
parallel to they axis and the wall.(c) In a corner of a right-angled
wedge(thick gray lines), the overlap volume(black region) is larger
than the one on a flat wall leading to an enrichment of rods lying
parallel and close to the corner of the wedge[see Fig. 4(b)]. (d)
Close to a right-angled edge(thick gray lines), the overlap volume
is smaller than the one on a planar wall. Therefore the density of
rods lying parallel and close to the edge is smaller than the density
near a planar hard wall at the same chemical potential[see Fig.
5(b)]. Similar considerations hold for the rods withz direction act-
ing as depletion agents on the rod withy direction. The rods withy
direction are exposed to the superposition of both effective interac-
tions. For thin rodss0,D!Ld the excluded volumes are similar to
plane and line segments.
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gence ofG is consistent with complete wetting of the wall–
isotropic fluid interface by a nematic film in the absence of
algebraically interaction potentials[21]. A similar behavior
of the excess adsorption close tomsINd has been found for the
same fluid near a planar hard wall[12–14].

To understand the origin of the calculated excess adsorp-
tions, it is instructive to study the variation of the density
profiles with increasing chemical potential. The orientation-
ally averaged density profilesrsx,zd shown in Fig. 8 demon-
strate that the wetting of the nonplanar wall–isotropic liquid
interface by a higher-density nematic film occurs as a two-
stage process where first the nematic phase fills the space
between the barriers until an almost planar isotropic–nematic
liquid interface has formed separating the higher-density
nematic fluid in the space between the barriers from the
lower-density isotropic bulk fluid. In the second stage a nem-
atic film of diverging film thickness develops upon approach-
ing the chemical potential at bulk isotropic–nematic coexist-

ence. In the presence of the patterned wall, the director(the
average orientation of the rods) of the nematic phase is par-
allel to the y axis because of the aforementioned effective
entropic attraction between rods oriented parallel to the
right-angled wedges of the barriers[see Fig. 6(c)]. Upon ap-
proaching the chemical potential at bulk isotropic–nematic
coexistence, i.e.,m.0.757kBT in Fig. 7 (with this value of
the kink position being largely independent ofh), the calcu-
lated density profiles at the isotropic–nematic interface be-
come virtually indistinguishable from the free isotropic–
nematic interface between coexisting bulk phases, as
expected for the case of complete wetting. In this limit this

FIG. 7. The excess adsorptionG [see Eq.(9)] of a fluid consist-
ing of thin hard rods of lengthL and thicknessD!L near a geo-
metrically structured wall as shown in Fig. 1 for various barrier
heights:h=0 (solid curves); h=2 L (dashed curves); h=8 L (dash-
dotted curves); h=12 L (dotted curves). The periodicity isp=5 L
and the barrier width isw=3 L in (a) andw=L in (b). The vertical
lines mark the value of the chemical potentialmsINd / skBTd
=0.8087227 at bulk isotropic–nematic coexistence. In all casesG
diverges logarithmically asm→msINd. Figure 8 exhibits density pro-
files for the system withh=8 L in (b) for the three chemical poten-
tials m=0.75, 0.77, 0.808kBT marked by arrows. The chemical
potentialm.0.757kBT corresponding to the pronounced variation
(no jump but steep increase) of G for h=12 L in (b) turns out to
agree with the chemical potential at the occurrence of the first-order
capillary nematization transition of the same fluid confined in a
corresponding slit pore of widthp−w=4 L. Neither the curves in
(a) nor in (b) intersect at a single point.

FIG. 8. Orientationally averaged total density profilersx,zd [see
Eq. (8)] of thin rods of lengthL and thicknessD!L in contact with
a hard wall for three chemical potentialsm=0.75, 0.77, 0.808kBT,
where msINd / skBTd=0.8087227 is the chemical potential at bulk
isotropic–nematic coexistence. The corresponding contour plots are
shown on the right. The sharp structures in the contour lines are
caused by the discreteness of the orientational degrees of freedom.
The wall atz=0 is patterned with rectangular(parallel) barriers of
width w=L with x0=2.5 L, height h=8 L, and periodicityp=5 L
(see Fig. 1). The corresponding excess adsorption is represented by
the dash-dotted line in Fig. 7(b), and the three chemical potentials
are marked by arrows in Fig. 7(b). For m=0.808kBT the interface
between the higher-density nematic film on the wall and the lower-
density isotropic bulk fluidsz→`d resembles closely the interface
between the free isotropic–nematic interface between coexisting
bulk phases, with coexisting densitiesrb

sIdDL2=1.25822486 and
rb

sNdDL2=1.91544377. Atm.0.757 kBT the trenches undergo a
nematization filling, which is a smooth but steep variation of the
density distribution.
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holds irrespective of the actual values of the widthw, height
h, and periodicityp. However, the thickness of the emerging
nematic film depends on the aforementioned model param-
eters and the chemical potential.

A very thin nematic liquid layer–corresponding to a large
undersaturation–follows the substrate pattern, whereas a suf-
ficiently thick layer is essentially flat(see Fig. 8). In the
following, we will be exclusively concerned withthick nem-
atic films, allowing us to define anx-independent film thick-
ness t=L3 fssh/Ld ,sp/Ld ,sw/Ld ,sm /kBTdd defined as the
distancezm between the midpoint of the density profile for
the planar isotropic–nematic interface and the substrate sur-
face z=0; f is a scaling function appearing on the basis of
dimensional analysis. The minimal film thickness for which
a planar isotropic–nematic liquid interface is still possible is
t*h. We consider the situation as illustrated in Fig. 9(a),
where for a given chemical potentialm a nematic(N) film of
thicknesst0 intrudes between a planar hard wall and an iso-
tropic (I) bulk fluid. At the same chemical potential the film
thicknesst of the fluid in contact with a geometrically pat-
terned wall is larger than the height of the barriersh and
smaller thant0+h [see Fig. 9(b)]. For p=w it follows that t
= t0+h as expected on physical grounds. It is worthwhile to
mention thatffsh/Ld ,sp/Ld ,sw/Ld ,sm /kBTdg as function of
w/L for given h/L, p/L, andm / skBTd exhibits a discontinu-
ity upon approachingw→0 because the ratio of the actual
substrate area(including the side planes of the rectangular
blocks) per periodp over the one projected onto thex−y
plane drops abruptly fromsp+2hd /p to 1 for w;0. Hence,
due to geometric constraints the film thickness in the pres-
ence of infinitely thin barriers differs from the one in the
absence of the barriers. Moreover, we find the following
properties, which are schematically visualized in Figs. 9(b)
and 9(c)

t = L 3 fSh
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p
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L
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kBT
D = L 3 gSh

L
,
w

p
,

m

kBT
D s10d

and for fixedw/p andm / skBTd

tsh + h1d = h1 + tshd, h * L. s11d

Equation(10) states that upon varying the barrier widthw
and the periodicityp such that the ratiosp−wd /w of the
substrate area at the bottomz=0 over the substrate area at the
top z=h is kept fixed, the film thickness does not change for
a given barrier heighth, chemical potentialm, and L. This
result is reminiscent of the Cassie equation[22]. Cassie con-
sidered a simple liquid in contact with a smooth, but chemi-
cally striped surface with periodicityp such that on stripes of
width w one has a contact angleq1 and in betweenq2. The
apparent average contact angle is given by

cosqapp=
w

p
cosq1 + S1 −

w

p
Dcosq2. s12d

Sinceqapp, q1, andq2 are determined uniquely bytapp, t1,
and t2 via the corresponding effective interface potentials
[see Eq.(4.56) in Ref. [21]], Eq. (12) states that the apparent
film thicknesstapp depends only on the ratiow/p, which is
the analogue of Eq.(10). Whereas Eq.(10) is valid for all
values ofw/L, h/L, and p/L, for molecular-scale surface
patterns with barrier heightsh&L we find deviations from
Eq. (11).

The wetting of the nonplanar wall–isotropic liquid inter-
face by a nematic film is driven by the steric interaction of
the rods with the solid substrate, which is mediated by the
fluid occupying the space between the barriers. As the barrier
height h increases the interaction between rods located at
z.h, and the part of wall which is located atz=0 weakens,
such that for large heighth and small widthw, wetting is
dominated by the interaction with thefluid in the space be-
tween the barriers and not by that with thesolid substrate at
z=0. However, one has to take into account that the rods in
the trenches between the barriers interact not only with the
part of the substrate wall, which is located atz=0, but also
with the side planes of the rectangular blocks which are par-
allel to thez−y plane.

V. SUMMARY

We have studied hard-rod fluids near geometrically struc-
tured walls using Zwanzig’s model of square parallelepipeds
with only three allowed orientations(Fig. 1). Within the
framework of a density functional theory, the grand potential
functional is minimized numerically and density profiles, ex-
cess adsorptions, as well as surface and line tensions are
determined leading to the following main results:

(i) The line tension for the isotropic fluid in contact with
a right-angled wedge(see Fig. 2) exhibits a change of sign
with increasing chemical potential, while the line tension for
the fluid in contact with a right-angled edge as well as the
wall–isotropic fluid surface tension at a planar hard wall are
positive (Fig. 3).

(ii ) Figures 4 and 5 demonstrate an enrichment[deple-
tion] of rods lying parallel and close to the corner of a right-
angled wedge[edge]. On the basis of effective entropic
forces between the rods and the walls(see Fig. 6), the results
may be interpreted in terms of a repulsive barrier of an ef-
fective potential repelling a rod, which is oriented parallel to

FIG. 9. Schematic side view of a planar wall and two geometri-
cally patterned walls(dark gray regions). They direction is perpen-
dicular to the plane of the figure(see Fig. 1). (a) The planar wall–
isotropic (I) liquid interface is wetted by a nematic(N) film of
thicknesst0. (b) At the same chemical potential the film thicknesst
on the geometrically patterned wall is larger thanh and smaller than
t0+h, wheret= t0+h for w=p. (c) Illustration of Eqs.(10) and(11);
w andp are half as large as in(b) andh is increased byh1.
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the corner of an edge, and approaches the edge sidewise, and
practically preventing it from passing around the corner. The
effective potential acting on a rod that is oriented parallel to
the corner of a wedge is larger than the one close to a planar
wall. Building on the effects demonstrated in Figs. 4–6, it
seems possible to devise structures that create localized and
directional entropic force fields for both natural and synthetic
rodlike colloids.

(iii ) Coexistence between an isotropic and a capillary
condensed nematic phase is observed for the fluid confined
in a hard pore of square cross section, provided the cross
section is sufficiently large. The density profile of the
capillary-condensed nematic phase is characterized by a
nematic phase throughout the pore, whereas the density pro-
file of the coexisting phase decays towards an isotropic phase
in the middle of the pore. For the same fluid confined in a slit
pore the confinement effects are weaker, i.e., in the slit pore
one observes capillary nematization only at a higher chemi-
cal potential.

(iv) From the calculated excess adsorptions(Fig. 7) and
density profiles(Fig. 8) of a fluid consisting of hard rods
near the geometrically structured wall shown in Fig. 1, we
conclude that complete wetting of the nonplanar wall–

isotropic liquid interface by a nematic film occurs as a two-
stage process. In the first stage the nematic phase fills the
space between the barriers until an almost planar isotropic–
nematic liquid interface has formed, separating the higher-
density nematic fluid in the trenches between the barriers
from the lower-density isotropic bulk fluid. In the second
stage, a nematic film of diverging film thickness develops
upon approaching the chemical potential at bulk isotropic–
nematic coexistence. The film thickness, defined as the dis-
tance between the midpoint of the density profile for the
almost planar isotropic–nematic interface and the substrate
bottom atz=0, is larger for the fluid near the geometrically
structured wall than the one for the fluid near a planar wall at
the same chemical potential(Fig. 9).

Finally, we note that phenomena which emerge from the
contact of a rod fluid which is in its bulk in the nematic
phase are also interesting because of the possibility to deliver
external lateral structures deep into the bulk of the adjacent
fluid which offers a convenient means to image patterned
surfaces. Applying a fundamental measure theory to the sys-
tem under consideration will allow one to study thick rods or
platelets[23] as well as rods with continuously varying ori-
entations[24] near patterned surfaces.
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