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Density functional theory is used to study colloidal hard-rod fluids near an individual right-angled wedge or
edge as well as near a hard wall, which is periodically patterned with rectangular barriers. The Zwanzig model,
in which the orientations of the rods are restricted to three orthogonal orientations but their positions can vary
continuously, is analyzed by numerical minimization of the grand potential. Density and orientational order
profiles, excess adsorptions, as well as surface and line tensions are determined. The calculations exhibit an
enrichmenfdepletior of rods lying parallel and close to the corner of the weggge. For the fluid near the
geometrically patterned wall, complete wetting of the wall—isotropic liquid interface by a nematic film occurs
as a two-stage process in which first the nematic phase fills the space between the barriers until an almost
planar isotropic—nematic liquid interface has formed separating the higher-density nematic fluid in the space
between the barriers from the lower-density isotropic bulk fluid. In the second stage, a nematic film of
diverging film thickness develops upon approaching bulk-isotropic—nematic coexistence.
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I. INTRODUCTION the centers of mass of the rods at painwith orientation

There is growing interest in properties of suspensions of°= (¢, ¢) of the normal along their main axis of symmetry is
colloidal particles near structured walls because of usefuflenoted as(r,w). The equilibrium density profile of the
applications, such as selective deposition of partiflgsnd  inhomogeneous liquid under the influence of an external
controlled growth of colloidal crystal2]. While experimen-  field Ve, (I, @) minimizes the grand potential functional
tal [1,2], theoretical[3—6], and computer simulatiofi’—1Q
studies have been devoted to the understanding of the behav-
ior of spherical colloidal particles near geometrically struc-
tured substrates, suspensions of rodlike colloidal particles in
contact with such substrates have not been investigated yet,
despite the importance of rodlike colloids for both biological
and materials application. From a theoretical point of view,
as compared with fluids consisting of spherical particles, the
study of rods is more difficult because of the additional ori-
entational degrees of freedom.

Here we study hard-rod fluids near geometrically struc- p
tured walls within the Zwanzig approximatiddl]. In this
model the allowed orientations of the rods are restricted to
three mutually perpendicular orientations rather than a con-
tinuous range of orientations in spa@ee Fig. 1, the posi-
tions of the rod centers are continuous variables. The advan-
tage of this model is that the difficult determination of
spatially inhomogeneous density and orientational order pro-
files becomes feasible allowing one to study various aspects
of hard-rod fluids near structured walls in detail. On the basis £ 1 The system under consideration consists of a fluid of
of recent theoretical studies on fluids of hard rods near plangpiy hard rods of lengtt and thicknesD <L in contact with a
hard_ Wa”S (12-14, we ex,peCt to find results that reman parqg substratégray). The surfacey(x) of the substrate wall exhibits
qUa"ta“Ve'Y Co”faCt even In_the absence of the restrlc_:tlon 1 periodic pattern with period consisting of rectangular blocks of
discrete orientational directions. In Sec. Il we describe thyiq v and heighth. The density profiles for the centers of the
density functional theory, which is used to analyze a hard-rogl,ys \ith an orientation of the normal along their main axis of
fluid in contact with an mdwujua! right-angled wedge symmetry parallel to the orthogonal unit vectors of the reference
or edge(Sec. Il) or with a periodically patterned wall ¢7me are denoted a5(x,2), p,(x,2), and p,(x,2). The system is
(Sec. V). spatially invariant in they direction. In accordance with the dis-

Il. MODEL AND DENSITY FUNCTIONAL THEORY creteness of the orientational degrees of freedghx,z<z(x)
: +L/2]=0, pXg+np—(W+L)/2<x<xXg+np+(w+L)/2,z<h]=0

We consider an inhomogeneous fluid consisting of hardvith ne Z, and py,[x,z<z(x)]=0 wherezy(xo+np-w/2<x<X,

rods of lengthL and thicknes® < L. The number density of +np+w/2)=h andz(x)=0 otherwise. The value of; is arbitrary.
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z+L/2
Qfp(r,w)]= f d*rdwp(r, 0)[kgT(IN[47A%p(r, @)1= 1) = IN[A%py(x,2)]= (ke T) (1 = Vexyy) = 2DL f dzip,(x,z;)
z-L/2
+ Veydr ,w)] + Fe)[p(l’,w)], (1) x+L/2
. . . - 2DL dxle(lez)v (5)
where A is the thermal de Broglie wavelength apdis the x-L/2
chemical potential. Within the Onsager second virial ap-
proximation, the free-energy functionBl{p(r, )] in ex-  and
cess of the ideal gas contribution redd$] IN[A3p,(%,2)] = (ke T) (& = Vexeo(X,2))
kBT 3 3 z+L/2
Felp(r,@)]== 2" | d*rydud’rsdazp(ry,0)p(r 2, 0,) - 20L f dzp,(%.2)
z-L/2
Xf(rl,rz,(x)l,wz), (2) x+L/2 z+L/2
wheref(r,r,, w1, w,) is the Mayer function of the interac- - ZDJX_L/Z dxlfz-uz dzipi(x1,21), (6)

tion potential between two rods. The Mayer function equals
-1 if the rods overlap and is zero otherwise. Onsager demwhich allow for a straightforward iterative numerical com-
onstrated that the second virial approximation becomes exagutation on a 20x,2) grid. We note that the meaning of the
in the limit of thin needlelike rod$D <L) for the bulk fluid  terms on the right side of Eqé4)—<6) can easily be inferred
because of the infinitesimal probability that three or morefrom considering the various orientations of the rqdse
rods will simultaneously interse¢i5]. Fig. 1. It is convenient to introduce the variabje*=pu

In the present application of density functional theory, we—KgT IN(A3/L?D). In the following sections numerical data
concentrate on the ordering effects induced by surfaces ge@ve given in terms of*, and we drop the star in order to
metrically structured such that the resulting ,») depends avoid a clumsy notation.
on two spatial coordinates. For the model system displayed The bulk phase behavior of this model was studied a long
in Fig. 1, apart from the possibility of surface freezing attime ago by Zwanzig11], who found a first-order-isotropic—
high densities, nonuniformities of the density occur only innematic phase transition similar to Onsager’s result for freely
the x-z plane, so thap(r,w)=p(X,z, 0, ¢). Minimization of  rotating rods[15]. Recently, the Zwanzig model has been
Q with respect top(x,z, 6, ¢) leads to the following Euler- used to investigate the phase behavior of monodisperse

Langrange equation: [12,13 and binary[14] rod fluids near a single planar hard
5 wall and confined in slit pore. These calculations yield a
kgT In[4mA°p(X,2,6, )] wall-induced continuous surface transition from uniaxial to

2m 77 biaxial symmetry. Complete wetting of the wall-isotropic
, liquid interface by a biaxial nematic film has been found. For

=1~ Vex{%,2,6,¢) + f dxdy,dz, f déy f déisin i the fluids confined by two parallel hard walls, at large slit
0 0 widths a first-order capillary nematization transition occurs,

X p(Xe, 21, 01, b F(%,Z, 0, X0, V1,20, 0y, b)kaT.  (3) which terminates in a capillary critical point upon decreasing

the slit width.
This equation can be solved numerically for a given chemi-
cal potentialy and a given external fiel¥(x,z, 6, ¢). For
computational purposes, the density profile has to be speci- !ll. HARD-ROD FLUID NEAR A RIGHT-ANGLED
fied on a sufficiently fine 4D(x,z,0,¢) grid. In order to WEDGE AND EDGE

reduce this computational effort we use the Zwanzig model

for rogsb[ll]. Withinl thiIZWkanz]ig ir;o%e' tge _Ir_(k)]ds are repré- siryctured surface shown in Fig. 1 it is instructive to analyze
sented by rectangular blocks of size& D xD. The positions gt the fluid around an individual right-angled wedge or
of the center of mass vary continuously, while the allowededge(see Fig. 2 These simple geometrical structures con-

qrientation"s ?f thi normal %f eac.h rod a::e_ restrictgd tohdirecétitute the building blocks of the structured surface displayed
tions parallel to t_ & y, an Z/;IXIS_(SGG ig. 1 EJsmg the " in Fig. 1. An analysis of the size dependence leads to the
notation ax(x,2)=a(x,z,6=m/2,$=0), ay(x,2)=a(x,z,0 following decomposition of the grand canonical potential

=ml2,¢=m/2), and ax,2)=a(x,z,6=0,$=0) with a  fnciional of the fluid, which in its bulk is taken to be in the
=p,Vexs the Euler-Lagrange equations for a fluid CO”S'St'ngisotropic phase

of thin Zwanzig rods can be written as
|n[A3pX(X, Z)] = (kBT)_l[M - VeXt,X(X! Z)]

Before studying the hard-rod fluid near the geometrically

Qfp(x,2)] = Hy[Htzwb +(Hy+H) v + ()], (7)

wiL/2 wherewy, is the bulk grand canonical potential densigy, is
- 2DLf dxgpy(%1,2) the wgll—isot_ropic quyid surfacg tensio.n at a_plar)ar wall, and
x-L/2 7(a) is the line tension of the isotropic liquid with=1/2
x+L/2 2+L/2 for the wedge andv=37/2 for the edge. The extensidtt,
- ZDJ dxlf dzp,(x1,2)), (4) of the system in directioB=x,y,z is defined as the length
x-LI2 z-L/2 available to the rim of the particles at closest approach to the
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FIG. 2. Cross section of an individual right-angled wedge and
edge, respectively. The outer part of the shaded region forms an
edge whereas the inner part forms a wedge. The geometrical struc- : L . L : L
tures are translationally invariant in tiyedirection perpendicular to 1.0 0.5 0 0.5 1.0
the plane of the figure. In Figs. 4 and 5 density profiles of thin hard w(kgT)
rods of lengthL are shown along the paths indicated by the solid, ) o )
dashed, and dotted lines, which are parallel to the outer and inner F!CG- 3. (8) The wall-isotropic liquid surface tension at a planar
surface, respectively. The paths are parameterizesisgh that for wall y,, (solid line) together with the line tension at a r!ght-angled
each lines=0 (¢) indicates the position of its corner et z. py(x,2) wedger;(7/2) (dashed lingand edger(37/2) (dotted ling of a
is symmetric around=0 andp, for s=0 equalsp, for s=0. Both fluid _con5|st|ng of th_ln rods of_Iength and _thlck_nessD<L as a
for the wedge and edge the position of the corner is associated withynction of the chemical potential. The vertical line marks the loca-

(x,2)=(0,0); in this figure both cases are superimposed. tion of the chemical potentia™/(kgT)=0.8087227 at bulk
isotropic—nematic coexistence. The wall-isotropic liquid interface is

completely wetted by a nematic film, i.eyy=yww*7n=0.0498
boundary. We restrict our analysis to chemical potentials *eT/(LD) at u"), where y,y is the wall-nematic liquid surface
smaller than the chemical potenti,al”\‘)/(kBT):0.8087227 tenS|(|oNn) andy,y is the |§otrop|c—nemat|c interfacial tens@lﬂ—.léﬂ.
at bulk-isotropic—nematic coexistence. In order to determin&?t.“ , 71(37/2) is slightly larger thany,,L and 7 (w/2) attains a
the line tensions we first calculate the bulk grand potential inite Value. that becomes visible only at higher _resolutloq(sﬁz)
densityw, and the surface tensiop,, by considering a bulk changes sign gt/ (keT)=0.27. (b) The total particle number den-

. . . . sity pp,=p(x,z— =) [see Eq(8)] of the homogeneous and isotropic
fluid and a fluid near a single hard wall, respectively. There—bulk fluid as a function of the chemical potential/(ksT)

afterr,(_w/Z? and T'(SW/Z) are calculated using the 9eOMetry |, DL2)~In 3+4p,DL?/3. At bulk isotropic—nematic coexist-
shown in Fig. 2. Figure 3 displays the surface tensignas  ence(marked by the vertical linethe density of the isotropic phase
well as the line tensions(/2) and 7(37/2) as a function s given byp,DL2=1.25822486. This figure allows one to translate
of the chemical potential. The steric interaction between th&alues for . into p, which is experimentally accessible, and
particles increases the surface tension with increasing chemiice versa.
cal potential. On the other hand, the onset of the surface-
induced nematic ordering of the particles leads to a decreasg-( corresponds to the position of the corner. Bos
of the surface tension for larger chemical potentials. In thehe density profiles at a planar hard wall are recovered. As is
limit of large negative chemical potentials, i.e., for noninter-apparent from Fig. 4, the density profilg(x,2) exhibits a
acting particles, the wall-isotropic liquid surface tension asnaximum ats=0 for the right-angled wedge. This maximum
well as the line tensions vanish. The line tensignr/2) for increases upon approaching the corner of the wedge. For a
the fluid near a right-angled wedge exhibits a change of sigright-angled edge a significant depletion of rods lying paral-
with increasing chemical potential whitg(37/2) >0 for all el to they axis is found near the corngsee Fig. 5. The
values of u. We note that by constructiom(7)=0. As a  sharp features of the density profiles in the presence of the
function of « the line tensionr(a) corresponds to the work right-angled edge are caused by the vanishingogk=
done per unit length, against the fluid, to change the dihedratL/2,z=0) and p,(x=0,z=-L/2), which is due to the
angle froms to some valuex [16,17. The corresponding presence of the impenetrably hard walls. Such cusps and
solvation torque ig;(a)=-d7(@)/da. discontinuities, although less pronounced, have already been
Figures 4 and 5 show the density profiles at the rightfound for the density profiles near a planar hard wall using
angled wedge and edge for a chemical potentiald. The the Zwanzig model[12-14, while the interfacial profiles
profiles are evaluated along lines parallel to the confiningbetween demixed fluid phases, as calculated for the same
walls (see Fig. 2 using a linear parametrizatiansuch that model, exhibit neither cusps nor discontinuit{@s]. We do
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FIG. 4. The density profileg,(x,2), p,(x,2), andp,(x,2) for thin
hard rods of length_ thicknessD <L near a right-angled wedge
evaluated along the paths specified in Figluging the same line
code, i.e., solid, dashed, and dotted linghe chemical potential is  code, i.e., solid, dashed, and dotted lind$e chemical potential is
#=0. The solid curve in@ [(c)] represents fos=0 [s<0] the ;4 =0. The solid curve in(a) [(c)] represents fors=L/2 [s
density profile along the line of closest contact, i.e., rods oriented<-| /2] the density profile along the line of closest contact, i.e.,
parallel to thex [7] axis touch the wall with the rinp, is symmetric  rods oriented parallel to the[z] axis touch the wall with the rim.
arounds=0 andpy for s=0 equalsp, for s0. py is symmetric around=0 andpy for s=0 equalsp, for s=0.

FIG. 5. The density profiles,(x,2), py(x,2), andp,(x, z) for thin
hard rods of lengti. and thicknes® <L near a right-angled edge
evaluated along the paths specified in Figiuging the same line

not expect to observe discontinuities in the density profiles . )
for freely rotating rods near an edge, similar to our findingsan enrichmenfdepletiorj of such rods close to the corner of
for hard rods near a planar hard wll9] (see discussion @ wedge[edgd. The results may be interpreted in terms of a
below). Although the calculated density profiles presented infepulsive barrier of an effective potential repelling a rod,
Figs. 4 and 5 can only be considered to be of qualitativevhich is oriented parallel to the corner of an edge, approach-
significance, we expect that the main features, namely thing the edge from the side, and practically preventing it from
enrichmentdepletiorj of rods lying parallel and close to the passing around the corner. On the other hand, the effective
corner of a wedgdedgd as well as the asymmetry of the potential acting on a rod, which is oriented parallel to the
density profilesp,(x,2) and p,(x,z) with respect to the line corner of a wedge, is “pushing” it into the corner. For a
s=0, remain valid for freely rotating rods. detailed analysis of these mechanisms acting on mixtures of
In order to understand the structure of the density profilesiard spheres near edges and wedges, see[Reand in
displayed in Figs. 4 and 5, it is instructive to apply the ideaparticular Figs. 5 and 7 therein.
of entropically driven forceqsee, e.g., Ref[20]) to the The simple illustration in Fig. @) is also helpful for un-
Zwanzig model. We consider rods of a given orientationderstanding the aforementioned discontinuities in the density
along thex, y, andz axes as belonging to one of three “spe- profiles near the right-angled edggee Fig. 5 When a thin
cies.” Such a three-component fluid maximizes its entropyod (D<L), which is oriented parallel to the edge, ap-
by maximizing the volume accessible per rod. Althoughproaches the edge from the side, the excluded-volume over-
there exist only steric repulsions between pairs of particledap drops abruptly to zero before the rod is passing around
maximizing the entropy in the fluid mixture can lead to anthe corner. This causes the discontinuities in the density pro-
effective entropic attraction between the rods and the wallsfiles along the paths specified in Fig. 2. For freely rotating
Figure §b) demonstrates that, when a rod of a given speciesods, the corresponding excluded-volume overlap decreases
approaches a planar watepresented in graythe total vol-  smoothly to zero because of the huge number of differently
ume available to rods of the other species increases. Thisoriented rods acting on the rod which is oriented parallel to
increases the total entropy of the mixture by an amount prothe edge. It is worthwhile to emphasize that the concept of
portional to the size of the excluded-volume overlap regioreffective entropic interactions is valid for arbitrary thickness
(represented in blagkmultiplied by the pressure. For a rod D #0 of the rods. However, for very thin rods the excluded
lying close and parallel to a right-angled wedgelgg the  volume and the excluded volume overlap region are similar
corresponding excluded-volume overlap region is increasetb plane and line segments. FD=0 the excluded volume
[decreaseld(see Figs. &) and &d), respectively leading to  vanishes as expected on physical grounds.
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The density profile of the capillary-condensed nematic phase
N is characterized by a nematic phase throughout the pore,
whereas the density profile of the coexisting phase decays
toward an isotropic phase in the middle of the pore. For
small pore cross sections, a sharp capillary nematization
transition no longer occurs and is replaced by a steep but
continuous filling upon increasing the chemical potential.
For the same fluid confined in a slit pore the confinement
effects are weaker. Thus, in the slit pore we observe capillary
nematization at a higher chemical potential corresponding to
a higher particle number density of the bulk fluid. However,
the spatially averaged particle number density of the coexist-
ing inhomogeneous isotropic phase in the slit pore is smaller
than the corresponding one in the pore of square cross
section.
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FIG. 6. lllustrations of the effective entropic interactions of hard
rods with surfaces(a Schematic side view of rectangular rods of
length L and thicknesdD with orientations along the, y, andz

axes, where thg axis is perpendicular to the plane of the figui®. We now turn our attention to the properties of the hard-
Due to the steric interaction, the centers of mass of rods with 44 fluid in contact with the hard wall shown in Fig. 1. The
direction are excluded from the hatched regions surrounding the,, tace of the wall is periodically patterned with rectangular
rods withy direction (quadratic cross-sectipmnd the wallgthick hard barriers of widttw and heighth, where the periodicity

gray lineg. Here one rod withx direction touches a rod witly . - :
direction (left) while another rod withx direction fully touches the |s_den0_ted byp. We focus on the nur_nerlcall_y determined
orientationally averaged number density profile

wall which is oriented parallel to theaxis (right). The rods withx
Qirectiop are viewed as deple.tion. agents leading to an effective p(X,2) = py(X,2) + py(X,2) + p,(X,2) (8)
interaction between the rod with direction and the walls. When ) ]

rods with orientations along thg axis are sufficiently separated and the excess adsorptibhdefined as

from each other and from the walls, the volume accessible to the

rods withx direction is the tlotal volume of the container minus the r= f dx dZp(x,2) = pp], (9)
volume of the hatched regions. However, when a rod oriented par-

allel to they axis is close to a wall, the volume accessible to the h _ ») is the total ticl ber density of
rods with x direction increases by the excluded-volume overlap™/ erepp=p(x,z—) is the total particle number density o

region marked in black. The corresponding increase in entropy inth® homogeneous bulk fluid. The volunde fdx dy dzof the
duces an effective attractive force between rods with an orientatiogySteém is defined as the total volume of the container, i.e.,
parallel to they axis and the wall(c) In a corner of a right-angled  the left boundary of the system displayed in Fig. 1 is taken to
wedge(thick gray lines, the overlap volumeblack region is larger ~ be the surfacey(x) of the substrate wall, which implies that
than the one on a flat wall leading to an enrichment of rods lyingthe trenches between the barriers contributd/td-igure 7
parallel and close to the corner of the wedgee Fig. 4b)]. (d)  displaysI for various values of the barrier heightand two
Close to a right-angled eddehick gray lines, the overlap volume values of the barrier widthv at a fixed periodicityp of the
is smaller than the one on a planar wall. Therefore the density ofurface pattern. For noninteracting rggs— —°), the calcu-
rods lying parallel and close to the edge is smaller than the densitiated excess adsorption reveals a slight depletion close to the
near a planar hard wall at the same chemical potefsie¢ Fig.  surface(I'<0) because there is less space available to the
_5(b)]. Slmllar_con3|derat|0ns hold for_th(_a ron withdirection gct- rods in the presence of the impenetrably hard walls. For the
ing as depletion agents on the rod wytiirection. The rods witly 55 me reason this depletion becomes more pronounced with
o_Ilrectlon are exposed to the superposition of both effectlye_mteracl—ncreasing height of the barriefge., increasing the actual
tions. For tr_un rodg¢0<D <L) the excluded volumes are similar to exposed solid argaUpon increasing the chemical potential,
plane and line segments. the excess adsorption increases and exhibits a change of sign
because of the aforementioned entropic attraction between
Finally, we briefly discuss the phase behavior of hard rod¢he rods and the surfacgsee Fig. §. For small barrier
confined in a hard pore of square cross section. The immeaeights,I" increases smoothly upon increasing the chemical
diate consequence of the pore is that rods oriented perpepotential, while a pronounced variation of the excess adsorp-
dicular to the confining walls cannot approach closer than dion is found for large barrier heights at a chemical potential
center-of-mass distandtg'2. There is a pronounced increase smaller than the chemical potential™ at bulk isotropic—
of the density of rods orientated parallel to the main axis ofnematic coexistence. Moreover, the calculation rentlets
the pore in the corners of the pore because of the aforemesdiverge logarithmically agu— w™. Near u'N) the excess
tioned effective entropic attraction. For sufficiently large adsorption can be fitted by=A; A, In[(u"™ = w)/(kgT)],
cross sections of the pore, we observe coexistence betwegrith fit parametersA; and A,, whereA,>0 turns out to be
an isotropic phase and a capillary-condensed nematic phasedependent of the surface pattern. The logarithmic diver-

IV. HARD-ROD FLUID IN CONTACT WITH A
PERIODICALLY STRUCTURED HARD WALL
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@ w=3L, p=5L /]
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FIG. 7. The excess adsorptidh[see Eq(9)] of a fluid consist-
ing of thin hard rods of length and thicknes® <L near a geo-
metrically structured wall as shown in Fig. 1 for various barrier
heights:h=0 (solid curve$, h=2 L (dashed curvgsh=8 L (dash-
dotted curvep h=12L (dotted curves The periodicity isp=5 L
and the barrier width isv=3 L in (a) andw=L in (b). The vertical FIG. 8. Orientationally averaged total density profil&,z) [see
lines mark the value of the chemical potentia™/(ksT) Eq. (8)] of thin rods of length. and thicknes® <L in contact with
=0.8087227 at bulk isotropic—nematic coexistence. In all cises & hard wall for three chemical potentigls=0.75, 0.77, 0.80&gT,
diverges logarithmically ag — N, Figure 8 exhibits density pro- Where u"/(kgT)=0.8087227 is the chemical potential at bulk
files for the system witth=8 L in (b) for the three chemical poten- isotropic-nematic coexistence. The corresponding contour plots are
tials ©=0.75, 0.77, 0.808gT marked by arrows. The chemical Shown on the right. The sharp structures in the contour lines are
potential u=0.757kgT corresponding to the pronounced variation caused by the discreteness of the orientational degrees of freedom.
(no jump but steep increasef I for h=12L in (b) turns out to ~ The wall atz=0 is patterned with rectangulgparalle) barriers of
agree with the chemical potential at the occurrence of the first-ordeidth w=L with x,=2.5L, heighth=8 L, and periodicityp=5 L
capillary nematization transition of the same fluid confined in a(see Fig. 1 The corresponding excess adsorption is represented by
corresponding slit pore of width—w=4 L. Neither the curves in the dash-dotted line in Fig.(), and the three chemical potentials
(a) nor in (b) intersect at a single point. are marked by arrows in Fig.(13). FOfM:0.808kBT the interface

between the higher-density nematic film on the wall and the lower-

density isotropic bulk fluidz— «) resembles closely the interface
gence ofl" is consistent with complete wetting of the wall- between the free isotropic—nematic interface between coexisting
isotropic fluid interface by a nematic film in the absence ofbulk phases, with coexisting densitie;é')DL2=l.25822486 and
algebraically interaction potentia[21]. A similar behavior  ,V'DL2=1.91544377. Atu=0.757 kgT the trenches undergo a
of the excess adsorption closeN) has been found for the nematization filling, which is a smooth but steep variation of the
same fluid near a planar hard wgll2—14. density distribution.

To understand the origin of the calculated excess adsorp-

tions, it is instructive to study the variation of the density ence. In the presence of the patterned wall, the dirgther
profiles with increasing chemical potential. The orientation-average orientation of the rodsf the nematic phase is par-
ally averaged density profilggx,z) shown in Fig. 8 demon- allel to they axis because of the aforementioned effective
strate that the wetting of the nonplanar wall-isotropic liquidentropic attraction between rods oriented parallel to the
interface by a higher-density nematic film occurs as a two+ight-angled wedges of the barridisee Fig. €c)]. Upon ap-
stage process where first the nematic phase fills the spageoaching the chemical potential at bulk isotropic—nematic
between the barriers until an almost planar isotropic—nematicoexistence, i.eu>0.757kgT in Fig. 7 (with this value of
liquid interface has formed separating the higher-densitythe kink position being largely independentiof the calcu-
nematic fluid in the space between the barriers from theéated density profiles at the isotropic—nematic interface be-
lower-density isotropic bulk fluid. In the second stage a nemeome virtually indistinguishable from the free isotropic—
atic film of diverging film thickness develops upon approach-nematic interface between coexisting bulk phases, as
ing the chemical potential at bulk isotropic—nematic coexist-expected for the case of complete wetting. In this limit this
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(@) (b) S © I tth+h)=h;+t(h), h=L. (11
I fo*h %W N Equation(10) states that upon varying the barrier width
<N hy and the periodicityp such that the ratidp—w)/w of the
z N Ito hlut heh, t+h, substrate area at the bott@mO0 over the substrate area at the
L— top z=h is kept fixed, the film thickness does not change for
X 5 by a given barrier heighh, chemical potentiaj, andL. This

result is reminiscent of the Cassie equatig#]. Cassie con-
sidered a simple liquid in contact with a smooth, but chemi-
cally striped surface with periodicity such that on stripes of
width w one has a contact angi® and in between,. The
apparent average contact angle is given by

FIG. 9. Schematic side view of a planar wall and two geometri-
cally patterned wallgdark gray regions They direction is perpen-
dicular to the plane of the figuresee Fig. 1 (a) The planar wall—
isotropic (1) liquid interface is wetted by a nemati®) film of

thicknesgy. (b) At the same chemical potential the film thickness W W
on the geometrically patterned wall is larger theand smaller than cos ﬁapp: — cosy + (1 - —)cos . (12
to+h, wheret=ty+h for w=p. (c) lllustration of Egs(10) and (11); p p
w andp are half as large as ifb) andh is increased by;. Since ﬂapp’ 9,, and 9, are determined uniquely U-)App, t,,

and t, via the corresponding effective interface potentials
holds irrespective of the actual values of the widthheight [see Eq(4.56 in Ref. [21]], Eq.(12) states that the apparent

h, and periodicityp. However, the thickness of the emerging film thicknesst,y, depends only on the ratier/p, which is

nematic film depends on the aforementioned model paran]r'he analogue of Eq10). Whereas Eq(10) is valid for all
eters and the chemical potential. values ofw/L, h/L, and p/L, for molecular-scale surface

A very thin nematic liquid layer—corresponding to a large pattelrgs with barrier heights<L we find deviations from
undersaturation—follows the substrate pattern, whereas a SLE’-q'( )- . . .
ficiently thick layer is essentially flatgsee Fig. 8 In the The wetting Of th_e ”S’”p"’?‘”ar Wa"_'SOtrO.p'C. liguid Inter-
following, we will be exclusively concerned witthick nem- face by a nematic fllm is driven by th_e steric interaction of
atic films, allowing us to define arindependent film thick- the rods with the solid substrate, which is mediated by the

nesst=L x f((h/L),(p/L),(W/L),(u/ksT)) defined as the fluid occupying the space between the barriers. As the barrier

distancez,, between the midpoint of the density profile for gi'%h;zdmt%r:azﬁfotfh\?va'lrl‘tvev;]?gﬁoig Igsgtv;de;trg (ﬁefkceaggd at
the planar isotropic—nematic interface and the substrate sur- |’ P '

facez=0; f is a scaling function appearing on the basis ofSUCh that for large height and small widthw, wetting is
) e ving 1on app 9 . . dominated by the interaction with tHkiid in the space be-
dimensional analysis. The minimal film thickness for which . . .
: . o S . ~._tween the barriers and not by that with thalid substrate at
a planar isotropic—hematic liquid interface is still possible is

t=h. We consider the situation as illustrated in Figa9 z=0. However, one has to take into account that the rods in

where for a given chemical potentiala nematiN) film of the trenches between the barriers interact not only with the

thicknessty intrudes between a planar hard wall and an isoPart of the substrate wall, which is locatedzst0, but also

tropic (1) bulk fluid. At the same chemical potential the film Wlllthl 'ihethyde_plalnes of the rectangular blocks which are par-
thicknesst of the fluid in contact with a geometrically pat- alletto thez=y plane.

terned wall is larger than the height of the barriérand

smaller tharty+h [see Fig. &)]. For p=w it follows thatt V. SUMMARY

=to+h as expected on physical grounds. It is worthwhile to
mention thatf[(h/L),(p/L),(w/L),(u/ksT)] as function of
w/L for givenh/L, p/L, andu/(kgT) exhibits a discontinu-
ity upon approachingv— 0 because the ratio of the actual
substrate areéincluding the side planes of the rectangular
blocky per periodp over the one projected onto the-y
plane drops abruptly fromip+2h)/p to 1 forw=0. Hence,
due to geometric constraints the film thickness in the pres
ence of infinitely thin barriers differs from the one in the
absence of the barriers. Moreover, we find the following
properties, which are schematically visualized in Figé) 9
and 9c)

We have studied hard-rod fluids near geometrically struc-
tured walls using Zwanzig's model of square parallelepipeds
with only three allowed orientationéFig. 1). Within the
framework of a density functional theory, the grand potential
functional is minimized numerically and density profiles, ex-
cess adsorptions, as well as surface and line tensions are
determined leading to the following main results:

" (i) The line tension for the isotropic fluid in contact with
a right-angled wedgésee Fig. 2 exhibits a change of sign
with increasing chemical potential, while the line tension for
the fluid in contact with a right-angled edge as well as the
wall—isotropic fluid surface tension at a planar hard wall are
positive (Fig. 3).

(i) Figures 4 and 5 demonstrate an enrichmigleple-
L) (10) tion] of rods lying parallel and close to the corner of a right-
"kgT angled wedge[edgd. On the basis of effective entropic

forces between the rods and the wafise Fig. §, the results
may be interpreted in terms of a repulsive barrier of an ef-
and for fixedw/p and u/(kgT) fective potential repelling a rod, which is oriented parallel to
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the corner of an edge, and approaches the edge sidewise, ardtropic liquid interface by a nematic film occurs as a two-
practically preventing it from passing around the corner. Thestage process. In the first stage the nematic phase fills the
effective potential acting on a rod that is oriented parallel tospace between the barriers until an almost planar isotropic—
the corner of a wedge is larger than the one close to a planaematic liquid interface has formed, separating the higher-
wall. Building on the effects demonstrated in Figs. 4-6, itdensity nematic fluid in the trenches between the barriers
seems possible to devise structures that create localized afrdm the lower-density isotropic bulk fluid. In the second
directional entropic force fields for both natural and syntheticstage, a nematic film of diverging film thickness develops
rodlike colloids. upon approaching the chemical potential at bulk isotropic—
(iii) Coexistence between an isotropic and a capillarynematic coexistence. The film thickness, defined as the dis-
condensed nematic phase is observed for the fluid confinednce between the midpoint of the density profile for the
in a hard pore of square cross section, provided the crossmost planar isotropic—nematic interface and the substrate
section is sufficiently large. The density profile of the bottom atz=0, is larger for the fluid near the geometrically
capillary-condensed nematic phase is characterized by structured wall than the one for the fluid near a planar wall at
nematic phase throughout the pore, whereas the density prtie same chemical potentigfig. 9).
file of the coexisting phase decays towards an isotropic phase Finally, we note that phenomena which emerge from the
in the middle of the pore. For the same fluid confined in a slitcontact of a rod fluid which is in its bulk in the nematic
pore the confinement effects are weaker, i.e., in the slit porghase are also interesting because of the possibility to deliver
one observes capillary nematization only at a higher chemiexternal lateral structures deep into the bulk of the adjacent
cal potential. fluid which offers a convenient means to image patterned
(iv) From the calculated excess adsorptigRgy. 7) and  surfaces. Applying a fundamental measure theory to the sys-
density profiles(Fig. 8) of a fluid consisting of hard rods tem under consideration will allow one to study thick rods or
near the geometrically structured wall shown in Fig. 1, weplatelets[23] as well as rods with continuously varying ori-
conclude that complete wetting of the nonplanar wall-entations[24] near patterned surfaces.
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